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ABSTRACT 

The effects of oscillator jitter on the performance of a tracking 
system are studied. First ,  a suitable characterization of the 
jitter is sought. It is found that the power spectrum of the fre- 
quency (or phase) fluctuations is a meaningful and useful charac- 
terization of oscillator jitter. Next, the mean-square e r ror  
introduced by an oscillator in the measurement of range o r  range- 
ra te  is related to this spectrum. Simple relationships result, 
enabling the identification of those parts of the jitter spectrum 
which represent I' short -term" and 'I long -term" instabilities 
respectively. The dividing line may be drawn roughly at a 
frequency 1/? where T is the round-trip propagation time. 
Thus, long and- short term instabilities a r e  distinguishable only 
in the context of a given application. 

The Goddard Range and Range-Rate System contains many pos- 
sible sources of jitter. The contributions of the various jitter 
sources to the overall range-rate e r ro r  a r e  evaluated. It w a s  
not possible to arr ive at accurate numerical results on e r ro r s  
because of the complete absence of information on jitter spectra.  
It is concluded that oscillator specifications for future systems 
should be made on the basis of jitter spectra, and accurate 
measurement techniques should be developed for evaluation of 
oscillator stability. 
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I. INTRODUCTION 

The main body of this report  consists of three chapters, each treating 

one aspect of the task described above. 

characterization of oscillator jitter. 

(or frequency) fluctuations is found to be a particularly useful characterization. 

Chapter LII establishes the  fundamental relationships between the performance 

of a Range and Range-Rate Tracking System and the jitter properties of its mas  

ter oscillator. Chapter IV identifies the range-rate e r r o r s  contributed by the 

j i t ters  in  various system signal sources. 

Chapter II is devoted to the meaningful 

The power density spectrum of the phase 

1 
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1.1 Purpose of the Report 

This report comprises the first final task report  on the results of a 

program of investigations carried out at ADCOM, Inc. under Contract No. 

NAS 5-9742 for NASA. 

and in direct support of,activities of members of the R F  Systems Branch, 

Advanced Development Division of the Goddard Space Flight Center. 

This work was conducted in close coordination with, 

The effort during the quarter 27 August - 30 November 1964 was 

allocated exclusively to performing the third task of the study program. Since 

the task w a s  completed in one quarter, no quarterly reports a r e  contractually 

required for the first quarter. 

1.2 Scope of the Report 

The first  task undertaken in the study program w a s  chosen to be task 

111 listed in the task requirements of the subject contract. 

follows : 

This task reads as 

Determine through an analysis the effect of short-term 
ca r r i e r  phase jitter on the performance of the GSFC 
Range and Range-Rate Tracking System. 
should relate oscillator performance to system perform- 
ance characteristics such as maximum attainable range , 
system accuracy, etc. The analysis should take into 
consideration all system signal sources including the 
transmitter, receiver ,local oscillators and spacecraft 
oscillator s . 

This analysis 



The results of this task were presented orally to the technical staff of 

the R F  Systems Branch on two occasions: 

Date of Presentation ADCOM Staff Participating 

26 October 1964 Ahmad F. Ghais 

30 November 1964 Ahmad F. Ghais 

Richard N. Lincoln 

Bert D. Nelin 

In addition, most of the contents of Chapters I1 and I11 were presented 

in the form of an  informal technical memorandum (Technical Memorandum 

No. G-63 -1) to the technical representative of the contracting officer. 

A technical paper covering some of the results of this effort w a s  pre-  

pared by members of the ADCOM staff and presented at  the Symposium on the 

Definition and Measurement of Short -Term Frequency Stability, held on Novem 

ber 23-24, 1964 at the Goddard Space Flight Center. 

quently published in the IEEE Proceedings (see Ref. 1). 

This paper w a s  subse- 

2 
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II. CHARACTERIZATION O F  OSCILLATOR JITTER 

2 . 1  Spectral Characterization of Jitter 

In any CW tracking system, a ranging tone derived from a stable mastei 

oscillator is transmitted from the ground to the target, which in turn retrans-  

mits it back to the ground. 

then compared with the phase of the transmitted tone (or of the master oscilla- 

tor), the difference phase being proportional to the range of the target. Any 

fluctuations in the phase of the master oscillator would introduce e r r o r s  in the 

measurement of range and range-rate, whence it is clear that the oscillator 

phase-jitter characteristics a r e  central to the evaluation of the effects of oscil- 

lator jitter on a tracking system. 

The phase of the tone received on the ground is 

It is convenient to express the oscillator output as 

A(t) represents the amplitude jitter, +(t) represents the phase jitter, andO is 

the mean angular frequency of the oscillator. We may think of the bracket 

[ Cjt + b(t)] = 0 (t) as the "instantaneous phase" of the oscillator, and its deriva- 

tive as the ''instantaneous angular frequency"(see Ref. 2,  p. 449) 

w*(t) E = D + &t). 
1 dt 

b(t) then represents the frequency jitter. 

terizations of oscillator jitter immediately come to mind, namely, 

Now, four possible spectral charac- 

a)  the power spectrum S (0) of the oscillator output, 

b) the power spectrum S (w) of the oscillator phase 

c) the power spectrum S'(w)  of the oscillator frequency 

d) the power spectrum SA(w) of the oscillator amplitude 

e 

fluctuations, + 
fluctuations, and b 

fluctuations. 
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Since the frequency fluctuation is the derivative of the phase fluctua- 

tion, it can easily be shown (see Ref. 3 ,  p. 252) that 

(2.3) 

so that characterizations b) and c) a r e  entirely equivalent. 

CW tracking systems employ amplitude l imiters at the receiver, consequently 

amplitude fluctuations of the oscillator (if  they exist) do not affect the perform- 

ance of the system. 

cance in the present context; the characterization we need must be simply and 

uniquely related to the phase fluctuations. 

Furthermore, all 

Thus, the amplitude characterization d) is of no signifi- 

sons: 

a) 

We are  left with essentially two possible spectral characterizations, 

namely, a) and b) (recall that b) and c) are equivalent). We now claim that the 

oscillator output spectrum S (u) is not suitable for our purposes, for two rea- e 

It can be shown that any given Se(u) may be the 
result of a specific amplitude fluctuation spec- 
trum s*(~), o r  of a phase fluctuation having a 
spectrum S+(w) which is one of a large class of 
possible spectra (differing in r m s  phase devia- 
tion and frequency of highest spectral component), 
o r  of a large class of combinations of amplitude 
and phase fluctuations. Thus, the oscillator out- 
put spectrum is neither simply nor uniquely re- 
lated to the phase fluctuations that affect the per-  
formance of a tracking system. 

b) As will be shown in Chapter III, there exist simple 
analytical relationships between the phase spectral 
density S (a) and suitable measures of system per - 
f o r m a n d  No such relationships involving the os- 
cillator output spectral density exist. 

W e  conclude that the power spectrum S (0) of the phase fluctuation (or 

the equivalent Sa (w)) is the most useful and meaningful characterization of os - 
cillator performance for our purposes. 

b 
b 
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2 .2  Sources of Oscillator Phase Jitter 

We recognize three distinct sources of phase instability, namely: 

a) Noise added to  the oscillator signal in the amp- 
lifier following the oscillator loop. This noise 
often has a uniform (flat) power spectrum of 
density No watts/ radian per sec over the amp- 
lifier bandwidth 2Ba rad /sec  around the oscil- 
lator frequency. Since we a r e  dealing with very 
stable oscillators, we may assume that the total 
noise power 2BaN0 is much smaller than the os- 
cillator signal power P, in which case the resultant 
power spectrum of the phase jitter is also uniform 
over a band Ba with density N o / P  radians2/radian 
per sec. W e  can thus write (see Ref. 1 for details) 

for 0 < a  < B  a 

for w > B a 

s (0) = 4 

or equivalently, by using Eq. (2.3) 

for O < w < B a  

for w > B . a 

S ' ( w )  = 4 

b) Noise added to the oscillator signal inside the 
oscillator loop, and occupying a narrowband 
spectrum centered around the oscillator f re  - 
quency. The effect of this type of noise is to 
induce fluctuations of the oscillator frequency. 
As in a) above, the amplifier following the os- 
cillator wi l l  limit the spectrum of the frequency 
fluctuations to the spectral region 0 < w < Ba. 
The power spectrum of these fluctuations is 
found (see Ref. 1) to be approximately uniform: 

for O < w  < B a  

for w > Ba 

and the corresponding phase power spectrum is 

for 0 < w  < B  

for w > B  . 
a s (w) =ra2 

a 
b 
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Slow noise processes that directly frequency 
modulate the oscillator. Examples of such 
processes are: current and voltage fluctua- 
tions (flicker noise) , mechanical vibrations, 
temperature variations, etc. All  these proc - 
esses,  and hence the resultant frequency 
fluctuations have power spectra restricted to 
very low frequencies. The most common of 
these noise processes is flicker noise, which 
has a power spectrum inversely proportional 
to frequency. The spectrum of the resultant 
frequency fluctuations is thus given by 

where /3 is some constant and correspondingly 

( 2 . 8 )  

Clearly, S i  (w) can have the form in Eq. (2.8)  
only down to some small but nonzero w, other - 
wise the total flicker-noise power would be in- 
finite. 

It is reasonable to expect a typical oscillator to be influenced by all 

three sources of jitter discussed above, in which case the phase and frequency 

fluctuation spectra would be given by 

for w < Ba 

for w e B 
a 

S ' ( w )  = - No w 2 + c y  + w  B + P 

(2.1( 

(2.1; 

There exists some experimental evidence indicating that Eqs. (2.10) and(2.11) ar 

indeed reasonable characterizations of oscillator performance. However, tech- 

niques for measuring these spectra accuratelyhave so far beenlacking (see Ref. 1) 

In particular, it would be very useful to be able to measure the four parameters ( N  

ty, 6, B ) of Eqs. (2.10) and (2.11) thatwouldcharacterize the jitter properties of a 

particular oscillator. 

0 

a 
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"$%OM 
III. EFFECT OF OSCILLATOR JITTER ON 

RANGE AND RANGE-RATE MEASUREMENT 

3 .1  E r r o r s  in Range Measurement Caused by Oscillator Phase Ji t ter  

The mean square e r r o r  is a useful and widely employed measure of 

random range e r r o r s  in a tracking system. 

fundamental relationship between the mean-square range e r r o r  (denoted by 

o 

oscillator. 

In this section, w e  present a 

2 
) and the power spectrum of the phase (or  frequency) jitter in the master 

This relationship is derived analytically in the Appendix. 
R 

If we denote the true range by R and the corresponding round-trip 

propagation time by T ,  then the normalized mean-square range e r ro r  is 

found to  be 

3 is the mean frequency of the ranging tone, and H(w)  is the transfer function 

of the lowpass filter that smooths the range measurement. By combining Eqs. 

(2.3) and (3.1) we obtain a similar expression in t e rms  of the power spectrum 

S (0) of the phase jitter 
n 

b 
(3.2) 

Figure 3.1 is an illustration of the various factors appearing in the inte 

The t e rm S ' ( w )  represents the effect of the oscillator in de 

represents the effect of the ranging filte 

grand of Eq. (3.1). 

termining the e r ro r ,  the term I H(w) l  
b 

2 2 
and the sin (UT/  2)/ (UT/ 2) represents the effect of the range measurement oper 

ation. 

the curve representing the integrand. 

The normalized mean-square range e r r o r  is of course the area under 

It can be seen from Eq. (3.1) and Fig. 3 . 1  that only that portion of S' (W)  b 
which is passed by the lowpass filter H(o) will  contribute to the range e r ro r .  

Since the range measurements required in most space missions vary relativel; 

slowly, most tracking systems employ very narrow lowpass fi l ters H(o) to 

7 - A D V A N C E D  COMMUNICATIONS RESEARCH A N D  DEVELOPMENT- 



- 
R - 420 f 

Fig. 3 . 1  Illustration of the integrand in Eq. ( 3 . 1 ) .  

reduce the random e r r o r s  in the range reading. A reasonable choice of filter 

bandwidth is usually in the range 0.1 - 1 cps. In this case, the portion of S '(w) 

for frequencies above 0 . 1  - 1 cps does not contribute to the range e r ro r ;  or  

equivalently, frequency instabilities of the oscillator over time -intervals short  

e r  than 1-10 secs a r e  of no significance in the ranging application. 

4) 

The actual value of time-delay T being measured determines further the 

Referring to  Fig. 3 . 1 ,  we noti portion of S * ( w )  that contributes to range e r ro r .  

that the sin x/x2 filtering effect of the range measurement operation tends to 

emphasize the portion of S '(w) for angular frequencies below 2n/ T ,  and sup- 

presses  the portion above this value. Now, the low-frequency portion of S'(w)  

represents oscillator frequency-instability phenomena (called "long -term" ef - 
fects) that vary slowly within the time interval T ,  whereas the high-frequency 

portion of S (w) represents phenomena (called I '  short-term" effects) that vary 

rapidly within 7 .  Equation (3.1) then tells us  that "long-term" effects will  

b, 
2 

+ 
4 

4) 

8 
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always contribute to range e r ror ,  whereas the contribution of the " short -term" 

effects may be negligible, the dividing line being roughly 27r/7. 

A heuristic way to interpret these results is to say that the rapid short- 

term effects tend to be averaged out in  range measurement, whereas the slow 

long-term effects tend to form accumulating drifts. It is noteworthy that the 

above conclusions a r e  directly opposed to some commonly held views about the 

relative significance of short - and long-term jitter effects in tracking systems. 

Equation ( 3 . 1 )  further indicates an interesting interaction between the 

lowpass filter H(o) and the filtering effect of the range measurement operation 

represented by the factor sin x /x  . If the longest range to be measured is sucl 

that 1 / ~  is much greater than the cutoff frequency of H(o), then the sin x / x  

factor hardly influences the mean-square range e r ro r ,  and may be dropped 

from Eq. ( 3 . 1 ) .  

the milliseconds, in which case I /  7 is much greater than the usual filter band- 

widths of 0 . 1  - 1 cps, and the sin x/x factor may be dropped. 

hand, lunar operations with 7 M 5 seconds would be more marginal. 

2 2  

2 

For example, most orbital operations involve values of T in 

2 2  On the other 

An important conclusion to be drawn from the above results concerns 

the specification of oscillator performance in tracking systems. Meaningful 

specifications should be concerned with the power spectrum of the frequency 

(or phase) fluctuations, up to the cutoff frequency of the lowpass filter or  1 / ~  m ai 
whichever is smaller, where T~~ represents the maximum range to be meas- 

ured. 

so it is unnecessary to place specifications on it. 

The spectrum beyond this point does not affect the system materially, 

3 . 2  Errors in Range-Rate Measurement Caused by Oscillator Phase Ji t ter  

Since range-rate R is proportional to the doppler frequency shift, the 

range -rate measurement is obtained (at least  in principle) by differentiating 

the phase difference given by Eq. (A-2)  of the Appendix. 

obtained would be directly proportional to the e r r o r  in range-rate (denoted by 

AR) caused by oscillator frequency jitter. 

The term A& thus 

Since differentiation of a function 

9 - ADVANCED COMMUNICATIONS RESEARCH AND DEVELOPMENT- 



2 
results in a multiplication of its power spectrum by w , we immediately con- 

clude that the power spectrum of A4 is found from Eq. (A-10) to be 
r) 

( 3 . 3 )  

By following the same procedure as the one employed in the Appendix in con- 

nection with the range e r ror ,  we find that the normalized mean-square range- 

rate e r ro r  is expressed a s  
n 

where G(o) now is the transfer function of the lowpass filter that smooths the 

range -rate measurement. 

Much the same comments made in connection with Eq. ( 3 . 1 )  apply to 

Eq. ( 3 . 4 ) .  

uring systems (of which the Goddard Range and Range-Rate System is an ex- 

ample) the time 7 does not represent the round-trip propagation time, but rather 

a I '  cycle-counting" time associated with the digital equipment employed to meas 

ure  the doppler frequency. This point is discussed further in the following sec .  

tion. 

It should be remembered, however, that in some range-rate meas- 

10 
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IV. EFFECTS OF JITTER ON THE GODDARD RANGE-RATE MEASUREMENT 

4.1 The Range-Rate Measurement Technique of the GRARR System 

The Goddard Range and Range-Rate System (GRARR, for short) de- 

termines the range-rate of the target by measuring the doppler frequency shift 

on the up-link car r ie r  frequency. 

In this section we describe the range-rate measurement technique (in 

accordance with Ref. 4), and in the next section identify the sources of e r ro r  

in this measurement that can be traced back to oscillator jitter. 

The up-link car r ie r  frequency is synthesized at the ground station from 

a local oscillator that is entirely independent from, and hence not coherent with 

the system frequency reference. 

The range tones are phase modulated onto the up-link carr ier ,  and the 

modulated car r ie r  is transmitted to the transponder on the vehicle. The t rans-  

ponder heterodynes the up-link carr ier  with a local oscillator which is coherenl 

with the transponder output (down-link) car r ie r  frequency to achieve low inter- 

mediate frequencies after double frequency conversion. The resultant hetero- 

dyned signal is then phase modulated onto the down-link car r ie r .  

By reversing the transponder signal processing in the ground receiver, 

the up -link car r ie r  doppler is reconstructed for range -rate measurement. Thiz 

is indeed what the ground receiver does, even though the signal is not actually 

generated at VHF or S-band, but rather at a suitably low frequency called the 

bias frequency. 

frequency reference. 

This bias frequency is derived coherently from the system 

Figures 4.1 and 4. 2 illustrate the doppler measurement technique. 

be the two-way doppler shift on the (up-link) transmitted frequency f , and 

Lei 

f 

let f 

follows: 

D 0 

be the bias frequency. The range-rate is measured in three steps as 
B 
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0 

+ -  

fo- f B  fR 

Fig. 4.1  Doppler measurement technique. 

Count N~ 
Cycles 

1 

Read out N2 
to R extraction 
equipment 

N1 c 
1 2 ... @A 

* 

@? 
Start stop 

ANz=(r2- Tl) fR 

Fig. 4 . 2  Doppler measurement waveforms. 

12 
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1. The first counter generates a pair of pulses (start 
and stop) separated in time by the period of a fixed 
number N1 cycles of the doppler -plus -bias frequency. 
This time interval T is given by 

N1 
f D  + f T =  

B 

from which we find the doppler to be 

N1 f = -  
D T - f B .  

2. The second counter then measures the time interval T 
in units of I/ fR seconds, by counting the integral num- 
ber N2 of cycles of reference frequency fR occurring 
between the start and stop pulses. Ideally, when the 
interval T spans an integral number of cycles of the 
reference, then 

N2 

fR 
T = - .  

3.  Finally, the range-rate equipment converts the count 
N2 to a range-rate reading. 
by combining Eqs. (4. 2) and ( 4 . 3 ) :  

The doppler shift is found 

N1 fR 
fB N2 

f = - -  

and the range-rate is simply related to the doppler 
shift by 

R = F f o .  C 

0 

, N and f a r e  all fixed, and a r e  pre-prograr 
0’ fR 1 B The quantities f 

into the range-rate extraction equipment. 

4.2 Jit ter and Quantization Errors  in Range-Rate Measurement 

Range -rate measurement errors  a r e  introduced at the counters by: 

a) jitter in the up-link car r ie r  oscillator f , from 
0 

which the bias frequency fB is derived; 

13 - ADVANCED COMMUNICATIONS RESEARCH AND DEVELOPMENT 



b) jitter in the reference oscillator f 

c) jitter in the start-stop pulses generated by the 
first counter; and 

R; 

d) quantization effect in the second (N2) counter. 

We now relate the resultant range-rate measurement e r ro r  to these 

individual sources of error .  

Equation (4. 5) indicates that e r r o r s  in R result from e r ro r s  in the dop- 

pler measurement f 

partial differentiation of Eq. (4. 5), we obtain a relationship between these error8 

and in the knowledge of the up-link frequency f . D 0 By 

f 
'D C 

( AfD - f Af ). AR = - 
0 

0 0 
2f (4.6) 

Now, referring to Eq. (4. 2),  we recognize that doppler measurement 

only, since N is a fixed integer 

By partial differentiation of 

e r ro r s  can be caused by e r r o r s  in T and f 

which the first counter can count without e r ror .  

Eq. (4. 2) ,  we obtain the relationship between er rors :  

B 1 

N, 
A AT - A f  B AfD = -  7 (4.7) 

Next, referring to Eq. (4.3), we recognize that e r r o r s  in the measure - 
(reference jitter) and N (quantization R 2 

To this must be added an  e r r o r  6 representing unavoid 

ment of T can be caused by e r r o r s  in f 

in the second counter). 

able jitter in the start-stop pulses. 

we obtain 

Again, by partial differentiation of Eq. (4. 

AN2 N2 
-2 

A T = b + - -  
fR fR 

(4.8) 

Combining Eqs. (4.6), (4. 7) and (4.8) w e  obtain for the total range-ratc 

err or 

14 
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0 
Af A f R  

2fo T f R  f R  fR  
A N 2  N2 -1 + Af + f D F ]  A R =  - - [ T ( 6 + - - - .  C N1 

0 
B 

(4.9) 

It is desirable to eliminate T and N from this expression, in order to have 

AR in te rms  of the primary system parameters f 

tual doppler shift fD. U s e  Eqs. (4. 1) and (4.3) to get 

2 
f and N and the ac -  

0’ fR’ B 1 

A f  
C (fD+fB)2 AN2 bfR AR = -F[ ( 6 + - ) + ( f  + f  ) -+Af B + f  D 8  D B fR 
0 N1 fR 0 

Since the bias frequency is coherent wi th  the reference frequency, then 

AfB AfR 
- -  - - 
fB fR 

Equation (4.10) consequently reduces to 

Af, Af 

0 
( 6  +- ) + f , ( - -  

fR fR 
A R =  - -  

0 
2f 

(4.10’ 

(4.11 

(4.12 

4. 3 Numerical Results 

Equation (4. 12) identifies the various contributions to the range-rate 

e r ro r ,  and demonstrates their relative weighting. 

apply the theory developed in Chapter LII to determine the mean-square R err01 

caused by each e r r o r  source, then to add all these contributions to arr ive at 

the overall mean-square e r ror .  

this t ime because no information is available on the jitter spectra of the variou 

oscillators. 

The next step would be to 

Unfortunately, it is impossible to do so a t  
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There is, however, information available on I '  fractional jitter", usually 

stated in parts per billion or  parts per ten billion. 

ambiguity of fractional jitter as a characterization of oscillator jitter is dis- 

cussed elsewhere (Ref. 1). 

The inadequacy and possible 

Here, we simply use the fractional jitter informa- 

tion given in Ref. 5 to compute the contributions to R e r r o r  from Eq. (4.12). 

The results a re  summarized in tabular form below. 

a r e  seen to be negligible compared with the quantization term. 

The oscillator jitter terms 

RANGE -RATE PEAK MEASUREMENT ERRORS 

Error  Source S -band VHF 

Drift Delay ( 6) 0.0107 0.0099 m/ sec 

Quantization (AN 1 0.0363 0.0338 m/ sec 

2.2 x m/ sec Reference Instability ( A f R )  

2.8 X m/sec  Transmitter Instability( A f  1 
Total rms  e r r o r  0. 0378 0.0352 m/ sec 

-6 

-7 

2 
2.2 X 10 

2.8 X 10 
0 

A word of caution about these numerical results is in order. They a r e  

based on jitter specifications rather than on measured fractional jitters. Fur - 

thermore, because of the lack of information on jitter spectra, these results 

a r e  not computed with the aid of the accurate theory described in Chapter 111. 

Thus, experimentally observed e r r o r s  may well differ from those computed 

above. 
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V. CONCLUSIONS AND RECOMMENDATIONS 
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We have shown in this report that the spectrum of the phase or fre- 

quency fluctuations is a meaningful and useful characterization of the jitter 

properties of an oscillator. Furthermore, this spectrum is simply related 

to the range and range-rate e r ro r s  in a tracking system introduced by this 

jitter. 

The Goddard Range and Range-Rate System contains many possible 

sources of jitter. We have shown how to determine the contributionssto the 

overall e r r o r  caused by the various jitter sources. 

then be applied to obtain the mean square e r r o r  contributions. Unfortunately, 

no information on the jitter spectra in  the GRARR is available, s o  it w a s  not 

possible to find accurate numerical results on e r r o r s  caused by jitter. However 

the method of computation and all the necessary theory were presented. 

The spectral theory can 

It is evident, on the basis of this work, that specification of oscillator 

jitter characteristics for future systems should be made on the basis of f re-  

quency or  phase fluctuation spectra. Accurate experimental techniques for 

jitter spectrum measurement should be developed, both for acceptance testing 

of oscillators and for comparison of different oscillators. 
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PROGRAM FOR NEXT INTERVAL 

The effort during the next quarter will  be directed exclusively to Task11 

of the subject contract. This task reads as follows: 

The nonlinear phase characteristic and phase distortion exhibited by 

conventional telemetry receivers deteriorate the fidelity of data recovery. 

Some of the undesirable products of this phase distortion a re  recognized as 

crosstalk between frequency multiplexed channels and degradation of bit e r r o r  

rates of P C M  signals. 

The object of this task is to determine and report on the effects of non- 

In addition to the analy- linear phase variations on various circuit operations. 

sis, the report should contain handbook type information, tables and graphs 

showing the relation between phase nonlinearity expressed in an easily inter - 

preted fashion to such functions a s  the generation of intermodulation products, 

deterioration of bit e r ror  rates; et  61. 
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P R F C F D I ~ G  I PA GE BLANK NOT FILMED. 

APPENDIX 

Derivation of Equation (3 .  1) 

The first step is to develop a relationship between the range e r r o r  

and the oscillator phase jitter. 

If the ranging tone transmitted from the ground to the target is de- 

scribed analytically by Eq. (2. l), and if the round-trip propagation time is 

denoted by T ,  then the returned signal may be expressed as 

The range -measurement portion of the tracking system extracts the instan- 

taneous phase difference between transmitted and received tones, usually by 

amplitude limiting and phase-detecting the received tone. 

phase detector is then given by 

The output of the 

The first term in Eq. (A-2) is directly proportional to the true range 

R, L e . ,  

(A-3: 

whereas  the second te rm in Eq. (A-2) is directly proportional to the e r r o r  

in range (denoted by AR) caused by oscillator phase jitter, i. e.,  

Because (c/ 25) is a constant factor in Eq. (A-4), the mean-square range 

e r r o r  is simply given by 

(A-5 
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where the bar is used to indicate the operation of obtaining the mean (or  

average). 

square of the range, so w e  combine Eqs. (A-3) and (A-5) to obtain the normal- 

ized mean-square range e r r o r  

It is convenient to normalize the mean-square range e r ro r  to the 

I 

2 
R 0 

- =  

R 2  

The next step is to relate power spectrum S (w) of the phase e r ro r  
A 4  

A4 caused by jitter to the power spectrum of the phase (or frequency) fluctua- 

tions. 

We note that the phase e r r o r  due to jitter may be expressed in te rms  

of the frequency fluctuations as 

t 
* 

It is analytically convenient to change the limits of integration in Eq. (A-7) to 

( - 0 0 )  and (W).  In order to ensure that the contributions of the integral outside 

the interval [ t, (t + r ) ]  remain zero, we multiply the integrand by the rectan- 

gular pulse shown in Fig. A. l a  whence 

Ab = Jt" i (x)  dx = J" &x) Rect [ (x - t), (x - t - T ) ]  dx (A-8) 
t -00 

where the Rect function is defined generally by (see Fig. A. lb )  

for x < a 

for x b 
Rect [ (x - a), (x - b)] = for a < x 5 b 

* The analytical techniques employed in this appendix a r e  all standard 
techniques of communication theory. A particularly good treatment 



Fig. A . l a  Rect 1 

A - I t 9  

Fig. A . l c  

Y a 

+ T I ,  x] Fig. A . l b  

1 

- x  

Fig. A. 1 Illustrations of Rect function. 

We now recognize that the right-hand side of Eq. (A-8) represents the 

convolution of b(x) and Rect [ (x + T ) , x ]  (see Fig. A .  l c ) .  It is well known that 

the power spectrum of the convolution of two time-functions is the product of 

the power spectra of these functions divided by 2n . Knowing that the power 
* 

2 2 spectrum Rect [ (x + T ) ,  x] is sin (w 71 2)/ (w/ 2) , we can immediately w r i t e  

the power spectrum of the phase error  as 
9 

(A-1C 

Since the range measurement varies slowly, most tracking systems 

employ a very narrow lowpass filter (denoted by H(o)) to reduce the random 

fluctuations in the phase measurement of Eq. (A-2).  The effect of this filter 

on the power spectrum of the phase e r r o r  is to modify it to read 

(A-11 

* This is discussed in detail on pp. 247-248 of Ref. 3. 
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Finally, the mean-square phase e r ro r  (Ab)2 is the total power of the 

phase e r ror ,  thus 

Combining Eqs. (A-6)  and (A-12)  we obtain the normalized mean-square 

range e r ro r  

This equation is reproduced as Eq. ( 3 . 1 )  in the main body of this report. 

(A -1 

(A -1 
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